Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38251025

RESUMO

A Z-type heterojunction MnO2@g-C3N4 photocatalyst with excellent performance was synthesized by an easy high-temperature thermal polymerization approach and combined with peroxymonosulfate (PMS) oxidation technology for highly efficient degrading of tetracycline hydrochloride (TC). Analysis of the morphological structural and photoelectric properties of the catalysts was achieved through different characterization approaches, showing that the addition of MnO2 heightened visible light absorption by g-C3N4. The Mn1-CN1/PMS system showed the best degradation of TC wastewater, with a TC degradation efficiency of 96.97% following 180 min of treatment. This was an approximate 38.65% increase over the g-C3N4/PMS system. Additionally, the Mn1-CN1 catalyst exhibited excellent stability and reusability. The active species trapping experiment indicated •OH and SO4•- remained the primary active species to degrade TC in the combined system. TC degradation pathways and intermediate products were determined. The Three-Dimensional Excitation-Emission Matrix (3DEEM) was employed for analyzing changes in the molecular structure in TC photocatalytic degradation. The biological toxicity of TC and its degradation intermediates were investigated via the Toxicity Estimation Software Test (T.E.S.T.). The research offers fresh thinking for water environment pollution treatment.

2.
Chemosphere ; 335: 139021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247680

RESUMO

A systematic investigation of coupling dielectric barrier discharge (DBD) plasma and different ultraviolet bands (UVA, UVB, UVC, and VUV) was constructed for antibiotic-contaminant wastewater treatment. Compared with DBD, UV, or other combined DBD/UV systems, the DBD/VUV/UVC system exhibited excellent degradation and mineralization efficiencies for oxytetracycline (OTC), achieving 93.2% removal rate (reaction rate constant 1.05 min-1) and higher decarbonization efficiency (mineralization rate 0.47 mg C min-1) within 2.5 min treatment. The radical quenching tests revealed that HO⋅, O2·-, and 1O2 were all involved in the decomposition of OTC in the DBD/VUV/UVC system, among which O2·- played a dominant role. Possible degradation pathways of OTC in the DBD/VUV/UVC process were proposed using density functional theory and detected intermediates. Four indexes were used to assess the toxicity of OTC and its degraded intermediates. The inorganic anions and HA slightly reduced the degradation efficiency of the DBD/VUV/UVC system. This research provides new ideas to broaden the application of plasma and alleviate the water environment crisis.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Vácuo , Poluentes Químicos da Água/toxicidade , Raios Ultravioleta , Antibacterianos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...